self-superv search results




self-superv - 20 / 35
dx.doi.org | Yesterday
Summary:
We present a method for reconstructing accurate and consistent 3D hands from a monocular video. We observe that detected 2D hand keypoints and the image texture provide important cues about the geometry and texture of the 3D hand, which can reduce or even eliminate the requirement on 3D hand annotation. Thus we propose ${\rm {S}^{2}HAND}$, a self-supervised 3D hand reconstruction model, that can jointly estimate pose, shape, texture, and the camera viewpoint from a single RGB input through the s...


Keywords: self-supervised

arxiv.org | Yesterday
Summary:
Self-supervised learning is gaining considerable attention as a solution to avoid the requirement of extensive annotations in representation learning on graphs. We introduce \textit{Regularized Graph Infomax (RGI)}, a simple yet effective framework for node level self-supervised learning on graphs that trains a graph neural network encoder by maximizing the mutual information between node level local and global views, in contrast to previous works that employ graph level global views. The method...


Keywords: self-supervised, node, supervised learning, network,

arxiv.org | Yesterday
Summary:
Several deep neural networks have recently been shown to generate activations similar to those of the brain in response to the same input. These algorithms, however, remain largely implausible: they require (1) extraordinarily large amounts of data, (2) unobtainable supervised labels, (3) textual rather than raw sensory input, and / or (4) implausibly large memory (e.g. thousands of contextual words). These elements highlight the need to identify algorithms that, under these limitations, would s...


Keywords: self-supervised, supervised learning, network, algorithms,

arxiv.org | Yesterday
Summary:
Self-supervised pre-training and transformer-based networks have significantly improved the performance of object detection. However, most of the current self-supervised object detection methods are built on convolutional-based architectures. We believe that the transformers' sequence characteristics should be considered when designing a transformer-based self-supervised method for the object detection task. To this end, we propose SeqCo-DETR, a novel Sequence Consistency-based self-supervised m...


Keywords: transformer, self-supervised, network, object detection,

arxiv.org | Yesterday
Summary:
Depth-from-defocus (DFD), modeling the relationship between depth and defocus pattern in images, has demonstrated promising performance in depth estimation. Recently, several self-supervised works try to overcome the difficulties in acquiring accurate depth ground-truth. However, they depend on the all-in-focus (AIF) images, which cannot be captured in real-world scenarios. Such limitation discourages the applications of DFD methods. To tackle this issue, we propose a completely self-supervised ...


Keywords: self-supervised, ios

arxiv.org | Yesterday
Summary:
Deep learning-based recommender systems have achieved remarkable success in recent years. However, these methods usually heavily rely on labeled data (i.e., user-item interactions), suffering from problems such as data sparsity and cold-start. Self-supervised learning, an emerging paradigm that extracts information from unlabeled data, provides insights into addressing these problems. Specifically, contrastive self-supervised learning, due to its flexibility and promising performance, has attrac...


Keywords: recommender systems, self-supervised, contrastive, supervised

arxiv.org | Yesterday
Summary:
Graph property prediction tasks are important and numerous. While each task offers a small size of labeled examples, unlabeled graphs have been collected from various sources and at a large scale. A conventional approach is training a model with the unlabeled graphs on self-supervised tasks and then fine-tuning the model on the prediction tasks. However, the self-supervised task knowledge could not be aligned or sometimes conflicted with what the predictions needed. In this paper, we propose to ...


Keywords: self-supervised

arxiv.org | Yesterday
Summary:
We introduce Corrupted Image Modeling (CIM) for self-supervised visual pre-training. CIM uses an auxiliary generator with a small trainable BEiT to corrupt the input image instead of using artificial [MASK] tokens, where some patches are randomly selected and replaced with plausible alternatives sampled from the BEiT output distribution. Given this corrupted image, an enhancer network learns to either recover all the original image pixels, or predict whether each visual token is replaced by a ge...


Keywords: self-supervised, network, visual, r ,

arxiv.org | Today
Summary:
Self-supervised learning leverages unlabeled data effectively, improving label efficiency and generalization to domains without labeled data. While recent work has studied generalization to more acoustic/linguistic domains, languages, and modalities, these investigations are limited to single-source speech with one primary speaker in the recording. This paper presents Cocktail HuBERT, a self-supervised learning framework that generalizes to mixture speech using a masked pseudo source separation ...


Keywords: self-supervised, framework, supervised learning

arxiv.org | Today
Summary:
The images and sounds that we perceive undergo subtle but geometrically consistent changes as we rotate our heads. In this paper, we use these cues to solve a problem we call Sound Localization from Motion (SLfM): jointly estimating camera rotation and localizing sound sources. We learn to solve these tasks solely through self-supervision. A visual model predicts camera rotation from a pair of images, while an audio model predicts the direction of sound sources from binaural sounds. We train the...


Keywords: metric, visual

arxiv.org | Yesterday
Summary:
Contrastive learning have been widely used as pretext tasks for self-supervised pre-trained molecular representation learning models in AI-aided drug design and discovery. However, exiting methods that generate molecular views by noise-adding operations for contrastive learning may face the semantic inconsistency problem, which leads to false positive pairs and consequently poor prediction performance. To address this problem, in this paper we first propose a semantic-invariant view generation m...


Keywords: pre-trained, self-supervised, contrastive, design

arxiv.org | Yesterday
Summary:
The challenge on forestalling monkeypox (Mpox) spread is the timely, convenient and accurate diagnosis for earlystage infected individuals. Here, we propose a remote and realtime online visualization strategy, called "Super Monitoring" to construct a low cost, convenient, timely and unspecialized diagnosis of early-stage Mpox. Such AI-mediated "Super Monitoring" (Mpox-AISM) invokes a framework assembled by deep learning, data augmentation and self-supervised learning, as well as professionally c...


Keywords: deep learning, self-supervised, supervised learning,

arxiv.org | Yesterday
Summary:
Masked modeling has demonstrated its effectiveness in self-supervised point cloud learning by reconstructing the complete point cloud from its masked counterpart. Considering that masking only corrupts partial points of the input, in this paper, we promote the affine transformation, which corrupts all input points with certain rules, to complement the popular masking strategy, leading to the Masked and Affine transformed AutoEncoder for point cloud learning (Point-MA2E). Generally, we corrupt th...


Keywords: self-supervised

arxiv.org | Yesterday
Summary:
Self-supervised learning in vision-language processing exploits semantic alignment between imaging and text modalities. Prior work in biomedical VLP has mostly relied on the alignment of single image and report pairs even though clinical notes commonly refer to prior images. This does not only introduce poor alignment between the modalities but also a missed opportunity to exploit rich self-supervision through existing temporal content in the data. In this work, we explicitly account for prior i...


Keywords: supervised learning

arxiv.org | Yesterday
Summary:
Inspired by recent advances in diffusion models, which are reminiscent of denoising autoencoders, we investigate whether they can acquire discriminative representations for classification via generative pre-training. This paper shows that the networks in diffusion models, namely denoising diffusion autoencoders (DDAE), are unified self-supervised learners: by pre-training on unconditional image generation, DDAE has already learned strongly linear-separable representations at its intermediate lay...


Keywords: classification, network, self-supervised

arxiv.org | Today
Summary:
Supervised deep learning methods have achieved considerable success in medical image analysis, owing to the availability of large-scale and well-annotated datasets. However, creating such datasets for whole slide images (WSIs) in histopathology is a challenging task due to their gigapixel size. In recent years, self-supervised learning (SSL) has emerged as an alternative solution to reduce the annotation overheads in WSIs, as it does not require labels for training. These SSL approaches, however...


Keywords: deep learning, self-supervised, analysis, supervised

arxiv.org | Today
Summary:
We propose a self-supervised method for learning motion-focused video representations. Existing approaches minimize distances between temporally augmented videos, which maintain high spatial similarity. We instead propose to learn similarities between videos with identical local motion dynamics but an otherwise different appearance. We do so by adding synthetic motion trajectories to videos which we refer to as tubelets. By simulating different tubelet motions and applying transformations, such ...


Keywords: self-supervised

arxiv.org | Today
Summary:
Recently, self-supervised neural networks have shown excellent image denoising performance. However, current dataset free methods are either computationally expensive, require a noise model, or have inadequate image quality. In this work we show that a simple 2-layer network, without any training data or knowledge of the noise distribution, can enable high-quality image denoising at low computational cost. Our approach is motivated by Noise2Noise and Neighbor2Neighbor and works well for denoisin...


Keywords: neural network, network, self-supervised, excel

paperswithcode.com | Yesterday
Summary:
To address this, we present DeepMVC, unified framework for deep MVC that includes many recent methods as instances. Code...


Keywords: contrastive, clustering, framework

arxiv.org | Today
Summary:
Deep learning in general domains has constantly been extended to domain-specific tasks requiring the recognition of fine-grained characteristics. However, real-world applications for fine-grained tasks suffer from two challenges: a high reliance on expert knowledge for annotation and necessity of a versatile model for various downstream tasks in a specific domain (e.g., prediction of categories, bounding boxes, or pixel-wise annotations). Fortunately, the recent self-supervised learning (SSL) is...


Keywords: self-supervised, supervised learning


Please log in to see more search results.